수학과의 대학원 과정은 매년 학과에서 발행하는 《길잡이》 책자의 규칙을 따라 각자의 진로를 결정하게 됩니다. 따라서 세부 사항은 《길잡이》 책자를 따르면 되며 이 책자의 내용이 대학의 학칙과 상충될 경우에는 대학의 학칙을 따르면 됩니다.

1. 교육목표

자연과학과 참단공학이 급속하게 발전함에 따라 현대수학의 연구범위도 대단히 넓어졌고 다양하여졌다. 수리과학 이론, 과학 및 공학의 참단기술의 개발 그리고 인류사회에 크게 기여할 수 있는 고등 수학적 지식을 갖춘 인력을 양성하는 것을 목표로 한다.

2. 교과과정 개요

가. 석·박사 통합과정

가. 본 과정은 박사학위를 목표로 하는 학생을 위한 제도입니다.

석·박사 통합과정 학생이 박사학위논문제출 자격을 얻기 위한 두 절차는 다음과 같습니다.

1) 박사학위논문제출자격시험(Qualification Examination)을 통과해야 함.
2) 박사학위논문제출 자격에 대한 수학과 교수회의 심사를 통과해야 함.

박사과정 논문제출자격을 부여받으면 지도교수의 지도하에 박사학위논문을 작성하게 됩니다. 박사학위 논문의 일부 또는 전부가 대학원위원회가 인정하는 전문 학술지에 게재 또는 게재승인 된 사실을 증명할 수 있는 서류와 박사학위 논문을 제출하여 심사를 요청할 수 있으며, 본교 학칙의 학위수여 규정에 따라 심사가 진행되고 통과되면 소정의 절차에 따라 박사학위가 수여됩니다.

나. 통합과정 학생이 석사학위만 취득하고 졸업하기 위해서는 통합과정의 포기신청서를 학과에 제출하고 다음에 명시된 자격요건을 갖추어야 한다.

1) 2학점 이상 이수
2) 석사학위논문 제출
학점 이수는 교과목 강의에 등록하여 얻는 학점이 18학점 이상이어야 하며, 학칙에 따른 연구학점(석사논문연구 과목에서 얻음)을 포함하여 계산합니다. 다음 절에 여섯 계열로 분류된 과목 중에서 3개 계열 이상에 걸쳐 500~600 단위 과목을 최소한 하나 이상의 과목 이수를 하여야 합니다.

이상 최소 요건을 만족시키는 한편, 수학과에서 지정한 시기에 지도교수를 배정받고, 논문 지도를 받고 지정된 기한 내에 석사학위 논문을 작성하고 제출하여 심사를 통과하는 경우에 본교 소정의 절차를 따라 석사학위를 받게 됩니다.

나. 개설 강좌의 계열별 구분

수학과 대학원 과정의 교과목에는 500, 600, 700 단위의 3단계가 있습니다. 500단위 과목은 대학원 기본과목이 주종을 이루고, 600단위 과목은 고급 전문과목이 주종을 이루며, 700단위 과목은 특정한 전공분야의 세미나 과목으로 이루어져 있습니다. 600단위 이상의 과목은 논문지도교수의 선정된 후 지도교수의 지도를 받아 수강하는 것을 권장하며, 500단위 과목은 스스로 본인의 진로를 생각하여 선택하고 수강할 수 있는 것을 원칙으로 합니다.

500~600 단위 과목은 6개의 계열로 아래와 같이 분류합니다. 편의를 위해 교과목 학수번호를 첨부합니다.

- 제1계열 : 대수학, 정수론 및 대수기하학 관련 과목
 (501, 502, 503, 504, 505, 506, 507, 508, 509, 603, 604, 606, 608)
- 제2계열 : 해석학과 편미분방정식 관련 과목
 (510, 514, 515, 517, 519, 545, 612, 616, 617, 619, 647)
- 제3계열 : 위상수학, 미분기하학 관련 과목
 (520, 523, 524, 621, 622, 623, 624, 625)
- 제4계열 : 수치해석 및 응용수학 과목
 (541, 542, 551, 641, 645, 647, 651, 652)
- 제5계열 : 확률론 및 수리통계학과 금융수학/보험수학 관련 과목
 (530, 531, 533, 537)
- 제6계열 : 암호론, 부호론, 조합론 및 대수학과 위상수학에 기본을 둔 응용수학.
 (560, 561, 562, 565, 567, 661, 662)

※ 2005년 이후 입학한 학생에게는 필수과목을 요구하지 않으나, 3개 계열에서 최소한 한 과목 이상을 이수하여야 합니다.
3. 전공과목 일람표

<table>
<thead>
<tr>
<th>이수구분</th>
<th>학수번호</th>
<th>교과목명</th>
<th>강의-실습(실험)-학점</th>
<th>추천선수/선수과목</th>
</tr>
</thead>
<tbody>
<tr>
<td>전공선택</td>
<td>MATH501</td>
<td>대수학 I</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH502</td>
<td>대수학 II</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH503</td>
<td>가환대수학</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH504</td>
<td>가환환이론</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH505</td>
<td>대수적정수론</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH506</td>
<td>해석적정수론</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH507</td>
<td>가법정수론</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH508</td>
<td>대수기하학개론</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH509</td>
<td>유한군론</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH510</td>
<td>복소해석학</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH514</td>
<td>대수적환수론 I</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH515</td>
<td>대수적환수론 II</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH517</td>
<td>편미분방정식</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH519</td>
<td>함수해석학</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH520</td>
<td>미분방정제와 Lie군</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH523</td>
<td>미분위상수학 개론</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH524</td>
<td>대수적위상수학 개론</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH530</td>
<td>수리통계학</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH531</td>
<td>확률론</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH533</td>
<td>회귀분석</td>
<td>3-1-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH537</td>
<td>확률미적분과 금융수학</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH541</td>
<td>응용수학의 방법 I</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH542</td>
<td>응용수학의 방법 II</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH545</td>
<td>변분법</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH551</td>
<td>수치해석학</td>
<td>3-1-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH560</td>
<td>응용기하학</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH561</td>
<td>조합론 I</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH562</td>
<td>조합론 II</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH565</td>
<td>부호이론</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH567</td>
<td>대수적학호론</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH570/EECE508</td>
<td>이산및계산기하학</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH603</td>
<td>대수기하학</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH604</td>
<td>타원곡선론</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH606</td>
<td>표형식론</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH608</td>
<td>호몰로지대수</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH612</td>
<td>다변복소함수론</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH616</td>
<td>Fourier 해석학</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH617</td>
<td>조화해석학</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH619</td>
<td>바나흐공간론</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH621</td>
<td>미분기하학</td>
<td>3-0-3</td>
<td></td>
</tr>
</tbody>
</table>
교과과정(대학원)

<table>
<thead>
<tr>
<th>이수구분</th>
<th>학수번호</th>
<th>교과목명</th>
<th>강의-실습(실험)-학점</th>
<th>추천선수/선수과목</th>
</tr>
</thead>
<tbody>
<tr>
<td>전공선택</td>
<td>MATH622</td>
<td>복소다양체</td>
<td>3-0-3</td>
<td>교과목 개요 참조</td>
</tr>
<tr>
<td></td>
<td>MATH623</td>
<td>미분위상수학</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH624</td>
<td>대수적위상수학</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH625</td>
<td>Lie군과 그 표현론</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH641</td>
<td>고유치와 경계치 문제</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH645</td>
<td>수리유체역학</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH647</td>
<td>비선형편미분방정식</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH651</td>
<td>고등수치해석학</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH652</td>
<td>면미분방정식의 수치적방법</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH661</td>
<td>대수적그래프론</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH662</td>
<td>위상적그래프론</td>
<td>3-0-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH709~789</td>
<td>특강Ⅰ,Ⅱ,Ⅲ</td>
<td>1-0-1,2-0-2,3-0-3</td>
<td></td>
</tr>
<tr>
<td>연구과목</td>
<td>MATH699</td>
<td>석사논문연구</td>
<td>가변학점</td>
<td>교과목 개요 참조</td>
</tr>
<tr>
<td></td>
<td>MATH798</td>
<td>응용수학세미나</td>
<td>1-0-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH799</td>
<td>세미나</td>
<td>1-0-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH899</td>
<td>박사논문연구</td>
<td>가변학점</td>
<td></td>
</tr>
</tbody>
</table>

4. 교과목 개요

MATH 501, 502 대수학 I, II (Algebra I, II) ... (3-0-3)
추천선수과목: MATH 302
군의 구조, Nilpotent군과 가해군, 사영 및 단사적 가군 (Module), Hom과 쌍대성, 텐서 곱, 제와 Galois 이론, 유한체, Separability 및 원분체.

MATH 503 가환대수학 (Commutative Algebra) ... (3-0-3)
추천선수과목: MATH 302
환과 이데알, 분수환과 가환, 준소분해, Noetherian환, Artinian환, Discrete Valuation환과 Dedekind환, 유한화, 차원 정리.

MATH 504 가환환이론 (Commutative Ring Theory) ... (3-0-3)
추천선수과목: MATH 501, 503
Chain conditions, prime ideals, flatness, completion and the Artin–Rees lemma, valuation rings, Krull rings, dimension theory, regular sequences, Cohen–Macaulay rings, Gorenstein rings, regular rings, Derivations, Complete local rings.

MATH 505 대수적정수론 (Algebraic Number Theory) .. (3-0-3)
추천선수과목: MATH 501
대수적 수체상에서의 수론, Dirichlet 단수정리, ideal class군, 소수의 대수적 수체상에서의 분해, Galois체, class field 이론 입문.

MATH 506 해석적정수론 (Analytic Number Theory) ... (3-0-3)
수학과
추천선수과목: MATH 505
모듈러형식과 그의 산술, 타원곡선이론, Zeta 함수 및 L-급수, 소수이론의 해석학적 증명 및 소수분포.

MATH 507 가법정수론 (Additive Number Theory) ... (3-0-3)
수학과
추천선수과목: MATH 506

MATH 508 대수기하학개론 (Introduction to algebraic geometry) ... (3-0-3)
수학과
대수기하학 연구 대상인 algebraic variety, 이와 관련이 되는 기본 개념들과 성질들을 다룬다. 구체적으로, affine, projective, quasiprojective varieties, coordinate ring, regular map, function field, rational map, biregular and birational maps, singularities, blow-up, divisor, canonical divisor, intersection 등과 예들 을 통해 대수곡선과 대수곡면 등을 다룬다.

MATH 509 유한군론 (Finite Group Theory) ... (3-0-3)
수학과
추천선수과목: MATH 508
수학의 제반분야에 응용될 수 있는 군작용, permutation 군론에 대해 배우고, 군의 분류와 관련하여 Solvable and nilpotent groups, Extensions, Wreath product, p-groups, Frattini subgroups, Fitting subgroups, Sylow basis for solvable groups 등에 대해 배운다.

MATH 510 복소해석학 (Complex Analysis) .. (3-0-3)
수학과
추천선수과목: MATH 210
해석함수의 성질들, 복소적분, 특이점, 최대치원리, 해석함수공란, Runge 정리, Riemann 사상정리, 해석적 확대와 Riemann 곡면, 조화함수론, Picard 정리.

MATH 514, 515 실변수함수론 Ⅰ,Ⅱ(Real Analysis Ⅰ,Ⅱ) .. (3-0-3)
수학과
추천선수과목: MATH 311
Lebesgue 측도와 Lebesgue 적분, 미분이론, 고전 Banach 공간, 극대함수, 일반속도론, 표현 정리, 함수해석의 기본 정리들.

MATH 517 편미분방정식 (Partial Differential Equations) ... (3-0-3)
수학과
추천선수과목: MATH 413
Cauchy 문제, Laplace 방정식, Hilbert 공간론의 방법, Sobolev 공간, Potential 방법, Heat 방정식, 과동방정식.
MATH 519 함수해석학 (Functional Analysis) ... (3-0-3)
추천선수과목 : MATH 311
위상 벡터공간, Banach 공간, Hahn–Banach 정리, 연산자론, Fredholm 이론, Hilbert 공간론, 초합성과 Fourier 변환 및 그 응용, Banach 할.

MATH 520 미분다양체와 Lie군 (Differentiable Manifolds and Lie Groups) .. (3-0-3)
추천선수과목 : MATH 421
미분다양체와 부분다양체, Tendent, Vector 장, Frobenius 정리, 텐서이론, 미분형식, Lie 미분, Lie 군과 Lie 대수, Exponential Maps, 행렬군, 표현론, 다양체상의 적분론.

MATH 523 미분위상수학개론 (Introduction to Differential Topology) ... (3-0-3)
선수과목 : MATH 421
Immersion, Submersion, Transversality, Topological invariants

MATH 524 대수적 위상수학 개론 (Introduction to Algebraic Topology) ... (3-0-3)
추천선수과목 : MATH 421
Simplicial complexes, Euler수, Homology 이론, CW 복체, Lefschetz의 고정점 정리, Kunneth의 공식, Cohomology환, Poincare 의 생대성정리, Intersection 및 Linking수

MATH 530 수리통계학 (Mathematical Statistics) ... (3-0-3)
추천선수과목 : MATH 430
결정문제, Neyman–Pearson의 보조정리, 우도비검정, 일양최강력검정, 불편증검정, 축자검정, 비모수검정, 분할표에서의 검정, Bayesian 방법.

MATH 531 확률론 (Probability Theory) ... (3-0-3)
추천선수과목 : MATH 311, 431
확률 측도론, 확률과정론, 브라운 운동, Markov 성질, 악 수렴, 무한분해 가능한 분포, Martingale, 확률적분 방정식, 확률 미분 방정식, 확률근사.

MATH 533 회귀분석 (Regression Analysis) ... (3-1-3)
추천선수과목 : MATH 333, 430
Gauss–Markov 정리와 확률론을 포함한 회귀분석에서 전형적인 최소자승법, 실험자료분석, 회귀분석에서의 분산분석, Robust한 추정과 계획.

MATH 537 확률밀적분과금융수학 (Stochastic Calculus & Financial Mathematics) (3-0-3)
선수과목 : MATH 230, 311
금융자산의 가치평가, 금융 위험분석, 최적투자결정 등에 필요한 기본 수리이론에 대하여 학습한다. 해석학에서 기초한 확률과 정론을 이용하여 금융이론을 설명하는 확률미분방정식을 유도하고 그 해를 연구한다.
MATH 541 응용수학의 방법 I (Methods of Applied Mathematics I) .. (3-0-3) 추천선수과목: MATH 412
차분미분 방정식의 근접 양상, 적분의 근접값 계산, Regular and Singular 싱글방법, 정계층방법, WKB 방법, Green의 함수.

MATH 542 응용수학의 방법 II (Methods of Applied Mathematics II) .. (3-0-3) 추천선수과목: MATH 413

MATH 545 변분법 (Calculus of Variations) ... (3-0-3) 추천선수과목: MATH 311
수리물리학의 변분법, Euler 방정식, Hamilton–Jacobi 방정식, 보조조건, Quasi–Convex 함수, 존재정리, 미분가능성.

MATH 542 응용수학의 방법 II (Methods of Applied Mathematics II) .. (3-0-3) 추천선수과목: MATH 413

MATH 551 수치해석학 (Numerical Analysis) .. (3-1-3) 추천선수과목: MATH 451
연립선형 방정식의 수치해법, 직접 및 반복 해법, 역행렬, 조건수, 끝처리 오차, 다양성 근의 수치적 계산, 연립방정식 방정식의 수치해법, 고유치와 고유벡터 계산.

MATH 560 응용기하학(Applied Geometry for Computer Graphics and Vision) ... (3-0-3) 추천선수과목: MATH 120, 261
 컴퓨터 그래픽스와 비전의 기하학적 방법들 중 곡선과 곡면의 미분기하, 다면체의 위상수학, 대수학적 곡면과 곡선, 영상의 사영기하, Morphology에 의한 Pattern 인식, Fractal 기하학, Wavelet에 의한 신호압축 등에서 선택.

MATH 561 조합론 I (Combinatorics I) ... (3-0-3) 추천선수과목: MATH 120, 261
 볼테리지 그래프, 그래프상의 군작용, Cayley 그래프, 그래프의 embedding, Map Colorings, 군의 Genus, 그래프와 행렬론, 알고리즘.

MATH 562 조합론 II (Combinatorics II) .. (3-0-3) 추천선수과목: MATH 120, 261
 조합적 계수, Polya 정리와 응용, Interconnection network, 그래프의 설계, Block design, 유한기하학, 알고리즘.

MATH 565 보호이론 (Coding Theory) .. (3-0-3) 추천선수과목: MATH 120, 261
 통신이론에서 개발된 오류정정부호와 이에 연관된 수학적 연구주제를 학습한다. Linear Codes, Nonlinear codes, Hadamard matrices, The Golay codes, Finite fields, Dual codes and their weight distribution, Codes and designs, Perfect codes, Cyclic codes, BCH codes, MDS codes, Reed–Muller codes, Bounds on the size of a code.

MATH 567 대수적암호론(Algebraic Cryptology) .. (3-0-3) 추천선수과목: MATH 302
 현대대수 및 수론의 개념과 결과를 활용, Discrete log problem RSA, elliptic curve cryptosystem.
MATH 570/EECE 508 이산 및 계산기하학 (Discrete and Computational Geometry)(3-0-3)
기하 문제의 기본 개념인 convexity, incidence problems, convex polytopes의 주요성질, 기하 물체들의
.arrangements, lower envelopes, crossing numbers 등에 대해 학습하며, 이러한 조합 및 기하 특성을 규명하고 기
하 알고리즘의 테크닉들을 활용하여 최적의 기하 알고리즘을 설계하는 방법에 대해 학습한다.

MATH 603 대수기하학 (Algebraic Geometry) ...(3-0-3)
추천선수과목 : MATH 503, 524, 612
복소대수다양체, 소멸 정리, Riemann 곡면과 대수곡선, 유리 및 무리 곡면, Residues, Quadric Line Complex.

MATH 604 타원곡선론 (Elliptic Curves) ...(3-0-3)
추천선수과목 : MATH 505
대수 다양체, 대수곡선, 타원곡선상의 기하학, 유한체상의 타원곡선, 국소체상의 타원곡선,
대역체상의 타원곡선

MATH 606 보형형식론 (Automorphic forms) ...(3-0-3)
Modular form, Siegel modular form, Jacobi form, Quadratic form, L-function.

MATH 608 호몰로지대수 (Homological Algebra) ...(3-0-3)
추천선수과목 : MATH 301
호몰로지대수의 기본 개념인 Hom, tensor, Hom의 derived functor인 Ext, Tensor의 derived functor인
Tor 에 대해서 배우며 이들을 이용하여 대수학 역사상 유명한 난문제들 이었던 Quillen–Suslin 의 정리, Auslander–
Buchsbaum 의 정리들을 어떻게 증명하는지 소개한다.

MATH 612 다변복소함수론 (Several Complex Variables) ..(3-0-3)
추천선수과목 : MATH 510
Bergman Kernel 과 적분공식, Plurisubharmonic 함수, Pseudoconvexity, Domain of Holomorphy, Levi 문
제, Hardy 공간, 코시리만 방정식.

MATH 616 Fourier 해석학 (Fourier Analysis) ..(3-0-3)
추천선수과목 : MATH 311
Fourier 급수의 기본성질, 평균 수렴, 점에서의 수렴 및 발산, 공액함수, Hardy–Littlewood의 극대함수, Lebesgue 공
간상의 Fourier 변환.

MATH 617 조화해석학 (Harmonic Analysis) ...(3-0-3)
선수과목 : MATH 514
푸리에 변환과 진동적분 연산자 등의 기본 이론에 관하여 공부한 다음, 푸리에 변환 극한 연산자, 보크너–리스 연산자, 카케야
극대함수 등에 관한 여러 가지 현대 조화해석학의 이론과 관련분명성 및 베시코비치 집합의 차원 문제와의 연관성 등에 관
하여 공부한다.
MATH 619 바나흐공간론 (Theory of Banach spaces) (3-0-3)
추천선수과목: MATH 519
기본수열, Dvoretzky–Rogers 정리, 전통적인 바나흐 공간, Choquet 적분표현정리, Grothendieck 부등식.

MATH 621 미분기하학 (Differential Geometry) ... (3-0-3)
선수과목: MATH 520
접속이론, n 차원 Riemann 다양체, 곡률, Ricci 곡률텐서 및 Scalar 곡률, Jacobi장, 기하적 불변량, Gauss–Bonnet 정리,
Gauge 변환, 곡률과 위상의 상호관계.

MATH 622 복소다양체 (Complex Manifolds) .. (3-0-3)
선수과목: MATH 520
Sheaves, Cohomology, Infinitesimal Deformations, Hermitian 및 Kaehler 다양한상의 기하.

MATH 623 미분위상수학 (Differential Topology) ... (3-0-3)
선수과목: MATH 520
다양체의 Embedding, Sard 정리, Transversality, 벡터 속이론, Euler 수, Hopf Degree, Morse 이론, Cobordism 이론.

MATH 624 대수적위상수학 (Algebraic Topology) ... (3-0-3)
선수과목: MATH 524
Universal coefficient 정리, Poincaré duality, Jordan–Brouwer Separation 정리.

MATH 625 Lie군과 그 표현론 (Lie Groups and their Representations) (3-0-3)
선수과목: MATH 520
Exponential Maps, Clifford 대수와 Spinor 군, 반단순가군과 표현론, Representation Ring, Lie 대수의 표현론,
Peter–Weyl 정리, Dynkin Diagram.

MATH 641 고유치와 경계치 문제 (Eigenvalue and Boundary Value Problems) (3-0-3)
일반경계층 방법, 유효균일 근사법, 좌표 변형방법, 평균법, Krylov 방법, 고유치문제, 변동시간단계법 (Several Time Scale).

MATH 645 수리유체역학 (Mathematical Fluid Dynamics) (3-0-3)
추천선수과목: MATH 413
Navier–Stokes 방정식, Weak · Strong Solution, 소멸점성한계, Euler 방정식, Kato, Ponce, Yudovich의 결과들,
Vortex Dynamics, Measure-valued Solutions, Singular Solutions of 3-D Euler Equations, Concentration–
Cancellations.
MATH 647 비선형편미분방정식 (Nonlinear Partial Differential Equations) ... (3-0-3)
추천선수과목: MATH 517
Schauder이론, Fixed Point 이론, Harnack 부등식 및 국소 미분가능성 또는 유체방정식, 기체방정식 등 수리물리에 쓰이는 비선형방정식들의 해의 존재, 유일성에 관한 이론.

MATH 651 고등수치해석학 (Advanced Numerical Analysis) ... (3-0-3)
추천선수과목: MATH 551
보간법, 적교대항식, FFT, Spline, 수치적 적분, 미분 적분의 Extrapolation 상미분 방정식의 수치해, 편미분방정식의 자물법, 적분방정식의 수치해.

MATH 652 편미분방정식의 수치적방법 (Numerical Analysis of PDE) .. (3-0-3)
추천선수과목: MATH 413, 651
Ritz Gallerkin법, 삼합법, 혼합법, 2차 및 3차원 요소, 정확성, 수렴성, 안정성, 정제 및 동태문제. 유한차분법, 유한요소법과 유한차분법의 동적성.

MATH 661 대수적그래프론 (Algebraic Graph Theory) ... (3-0-3)
추천선수과목: MATH 464
대칭그래프, Strongly regular 그래프와 특수한 정규그래프, Distance transitive 그래프, Distance Regular 그래프, Primitivity와 Imprimitivity의 성질, Association Scheme과 Bose–Mesner Algebra, Design 이론이나 Coding 이론으로서의 응용.

MATH 662 위상적그래프론 (Topological Graph Theory) ... (3-0-3)
추천선수과목: MATH 301, 421
그래프의 곡면으로의 매장과 관련하여 그래프의 성질을 연구하는 분야이다. 이 과목은 대학원 과정에서 개설되는 교과목 이외에 특별히 개설해야 할 필요가 있거나 최근 학계에서 주목받고 있는 연구분야를 소개할 때 특강으로 강의한다. 반복수강 가능함.

MATH 709-789 특강 I, II, III (Topics) .. (1-0-1, 1-0-1, 2-0-2, 3-0-3)
대학원 과정에서 개설되는 교과목 이외에 특별히 개설해야 할 필요가 있거나 최근 학계에서 주목받고 있는 연구분야를 소개할 때 특강으로 강의한다. 특강의 개설시기와 제목, 강의내용, 선수과목은 담당교수가 정하며 반복수강 가능함.

MATH 709 대수학특강 (Topics in Algebra)
MATH 719 해석학특강 (Topics in Analysis)
MATH 729 기하학특강 (Topics in Geometry)
MATH 739 통계학특강 (Topics in Statistics)
MATH 749 응용수학특강 (Topics in Applied Mathematics)
MATH 759 전산수학특강 (Topics in Computational Mathematics)
MATH 761 조합론특강 (Topics in Combinatorics)
MATH 762 그래프이론특강 (Topics in Graph Theory)
MATH 768 부호론특강 (Topics in Coding Theory)
MATH 769 암호론특강 (Topics in Cryptography)
MATH 779 수치해석특강 (Topics in Numerical Analysis)
MATH 789 위상수학특강 (Topics in Topology)

MATH 798 응용수학세미나 (Applied Mathematics Seminar) ... (1-0-1)
수학 이론의 응용성을 보여주는 교내외 초청연사들의 강연을 통해 대학원생들이 수학의 응용성에 대한 이해를 증진시킨다.

MATH 799 세미나 (Seminar) ... (1-0-1)
교내외 초청연사들의 강연을 통해 대학원 학생들이 다양한 수학 전공분야에 대한 이해를 넓히고, 학문적 소양을 증진시킨다.

MATH 899 박사논문연구 (Doctoral Dissertation Research) ... (가변학점)
논문지도교수의 지도하에 학생의 연구분야의 최근 논문과 결과를 공부하여 그 이해한 바를 발표함으로써 독자적인 학습 및 연구능력을 키운다. 반복수강 가능함.